Suma de números complejos
La suma de números complejos se realiza sumando y restando las partes reales y las partes imaginarias entre sí, respectivamente.
Propiedades de la suma de números complejos
La suma de números complejos tiene las siguientes propiedades:
· Conmutativa
Dados dos números complejos a + bi y c + di se tiene la igualdad:
(a + bi ) + (c + di ) = (c + di ) + (a + bi )
Ejemplo:
(2 - 3i ) + (-3 + i ) = (2 - 3) + i (-3 + 1) = -1 - 2i
(-3 + i ) + (2 - 3i ) = (-3 + 2) + i (1 - 3) = -1 - 2i
· Asociativa
Dados tres complejos a + bi, c + di y e + fi , se cumple:
[(a + bi ) + (c + di )] + (e + fi ) = (a + bi ) + [(c + di ) + (e + fi )]
Ejemplo:
[(5 + 2i ) + (3 - 4i )] + (-9 + 8i ) = (8 - 2i ) + (-9 + 8i ) = -1 + 6i
(5 + 2i ) + [(3 - 4i ) + (-9 + 8i )] = (5 + 2i ) + (-6 + 4i ) = -1 + 6i
· Elemento neutro
El elemento neutro es 0 + 0i , puesto que
El elemento neutro es 0 + 0i , puesto que
(a + bi ) + (0 + 0i ) = (a + 0) + i (b + 0) = a + bi
El número 0 + 0i se escribe simplificadamente 0 y se le llama «cero».
· Elemento simétrico
· Elemento simétrico
El elemento simétrico de un número complejo cualquiera a + bi es (- a - bi ):
(a + bi ) + (-a - bi) = 0 + 0i = 0
Ejemplo:
El simétrico de 2 - 3i es -2 + 3i pues (2 - 3i ) + (-2 + 3i ) = 0
Resta de números complejos
La resta de números complejos se realiza sumando y restando las partes reales y las partes imaginarias entre sí, respectivamente.
(a + bi) − (c + di) = (a − c) + (b − d)i
( 5 + 2 i) + ( − 8 + 3 i) − (4 − 2i ) =
= (5 − 8 − 4) + (2 + 3 + 2)i = −7 + 7i
( 5 + 2 i) + ( − 8 + 3 i) − (4 − 2i ) =
= (5 − 8 − 4) + (2 + 3 + 2)i = −7 + 7i
Multiplicación de números complejos
El producto de los números complejos se realiza aplicando la propiedad distributiva del producto respecto de la suma y teniendo en cuenta que i2 = −1.
(a + bi) · (c + di) = (ac − bd) + (ad + bc)i
( 5 + 2 i) · ( 2 − 3 i) =
=10 − 15i + 4i − 6i2= 10 − 11i + 6 = 16 − 11i
División de números complejos
El cociente de números complejos se realiza multiplicando numerador y denominador por el conjugado de este.
No hay comentarios:
Publicar un comentario